25 research outputs found

    Assessing Vegetation Decline Due to Pollution from Solid Waste Management by a Multitemporal Remote Sensing Approach

    Get PDF
    Nowadays, the huge production of Municipal Solid Waste (MSW) is one of the most strongly felt environmental issues. Consequently, the European Union (EU) delivers laws and regulations for better waste management, identifying the essential requirements for waste disposal operations and the characteristics that make waste hazardous to human health and the envi-ronment. In Italy, environmental regulations define, among other things, the characteristics of sites to be classified as “potentially contaminated”. From this perspective, the Basilicata region is cur-rently one of the Italian regions with the highest number of potentially polluted sites in proportion to the number of inhabitants. This research aimed to identify the possible effects of potentially toxic element (PTE) pollution due to waste disposal activities in three “potentially contaminated” sites in southern Italy. The area was affected by a release of inorganic pollutants with values over the thresholds ruled by national/European legislation. Potential physiological efficiency variations of vegetation were analyzed through the multitemporal processing of satellite images. Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images were used to calcu-late the trend in the Normalized Difference Vegetation Index (NDVI) over the years. The mul-titemporal trends were analyzed using the median of the non-parametric Theil–Sen estimator. Fi-nally, the Mann–Kendall test was applied to evaluate trend significance featuring areas according to the contamination effects on investigated vegetation. The applied procedure led to the exclu-sion of significant effects on vegetation due to PTEs. Thus, waste disposal activities during previ-ous years do not seem to have significantly affected vegetation around targeted sites

    A multisource approach for coastline mapping and identification of shoreline changes

    Get PDF
    Coastal dynamics are driven by phenomena of exogenous and endogenous nature. Characterizing factors that influence their equilibrium and continuous monitoring are fundamental for effective environmental planning and management of coastal areas. In order to monitor shoreline changes, we developed a methodology based on a multisource and multitemporal approach. A database, related to the Ionian coast of Basilicata region (about 50 km), was implemented by using cartographic data (IGMI data), satellite imagery (SPOT-PX/XS, Landsat-TM, Corona) and aerial data covering the period form 1949 to 2001. In particular, airborne data (1 m spatial resolution) were acquired during a specific campaign we performed in 2000 and 2001. To obtain the best performance from the available data, we applied a data fusion procedure on visible and thermal information. Different algorithms were tested, such as band ratios and clustering for extracting the coastline. The best results from multispectral data were obtained using a threshold algorithm we devised by exploiting the green, red and NIR bands, whereas for panchromatic data we selected clustering as the more suitable method. Moreover, a GPS survey was performed to evaluate the influence of tidal effects

    The SAVEMEDCOASTS-2 webGIS: The Online Platform for Relative Sea Level Rise and Storm Surge Scenarios up to 2100 for the Mediterranean Coasts

    Get PDF
    Here we show the SAVEMEDCOASTS-2 web-based geographic information system (webGIS) that supports land planners and decision makers in considering the ongoing impacts of Relative Sea Level Rise (RSLR) when formulating and prioritizing climate-resilient adaptive pathways for the Mediterranean coasts. The webGIS was developed within the framework of the SAVEMEDCOASTS and SAVEMEDCOASTS-2 projects, funded by the European Union, which respond to the need to protect people and assets from natural disasters along the Mediterranean coasts that are vulnerable to the combined effects of Sea Level Rise (SLR) and Vertical Land Movements (VLM). The geospatial data include available or new high-resolution Digital Terrain Models (DTM), bathymetric data, rates of VLM, and multi-temporal coastal flooding scenarios for 2030, 2050, and 2100 with respect to 2021, as a consequence of RSLR. The scenarios are derived from the 5th Assessment Report (AR5) provided by the Intergovernmental Panel on Climate Change (IPCC) and encompass different Representative Concentration Pathways (RCP2.6 and RCP8.5) for climate projections. The webGIS reports RSLR scenarios that incorporate the temporary contribution of both the highest astronomical tides (HAT) and storm surges (SS), which intensify risks to the coastal infrastructure, local community, and environment

    The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    Get PDF
    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A multisource approach for coastline mapping and identification of shoreline changes

    No full text
    Coastal dynamics are driven by phenomena of exogenous and endogenous nature. Characterizing factors that influence their equilibrium and continuous monitoring are fundamental for effective environmental planning and management of coastal areas. In order to monitor shoreline changes, we developed a methodology based on a multisource and multitemporal approach. A database, related to the Ionian coast of Basilicata region (about 50 km), was implemented by using cartographic data (IGMI data), satellite imagery (SPOT-PX/XS, Landsat-TM, Corona) and aerial data covering the period form 1949 to 2001. In particular, airborne data (1 m spatial resolution) were acquired during a specific campaign we performed in 2000 and 2001. To obtain the best performance from the available data, we applied a data fusion procedure on visible and thermal information. Different algorithms were tested, such as band ratios and clustering for extracting the coastline. The best results from multispectral data were obtained using a threshold algorithm we devised by exploiting the green, red and NIR bands, whereas for panchromatic data we selected clustering as the more suitable method. Moreover, a GPS survey was performed to evaluate the influence of tidal effects

    Flecainide in ventricular arrhythmias. from old myths to new perspectives

    No full text
    Flecainide is an IC antiarrhythmic drug (AAD) that received in 1984 Food and Drug Administration approval for the treatment of sustained ventricular tachycardia (VT) and subsequently for rhythm control of atrial fibrillation (AF). Currently, flecainide is mainly employed for sinus rhythm maintenance in AF and the treatment of idiopathic ventricular arrhythmias (IVA) in absence of ischaemic and structural heart disease on the basis of CAST data. Recent studies enrolling patients with different structural heart diseases demonstrated good effectiveness and safety profile of flecainide. The purpose of this review is to assess current evidence for appropriate and safe use of flecainide, 30 years after CAST data, in the light of new diagnostic and therapeutic tools in the field of ischaemic and non-ischaemic heart disease

    Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine

    No full text
    The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate
    corecore